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Abstract

Disorder and linearity are essential to science. Empirically derived laws indicate that counts do

reflect underlying structure and can support inference. Starting from the premise that a linear

structure underlies data, Rasch deduced that the necessary and sufficient mechanism to convert

from counts to linear measures is the logistic ogive. Three variants of the Rasch model are

presented: for dichotomies, Poisson counts and rating scales. The need for data to cooperate

in the construction of measures motivates the assessment and selection of useful data by means

of quality control fit statistics. Rasch measurement is successfully employed in many fields.

Replication and Disorder

The advance of science depends on replication. It was not when Roentgen' made the accidental

discovery of a "peculiar black line" that science advanced, for "many such researchers had

found their photographic plates in the lab unaccountably spoiled." It was only after Roentgen

"put the new effect through its paces" and took the time to "check the facts," that X-rays

became a scientific advance.

Roentgen replicated the original phenomenon. Replication combines duplicationwith alteration.

Certain conditions are maintained. Certain conditions are different. The identical conditions

maintain order. The changed conditions introduce disorder. The more that the essential nature

of the original phenomenon, its "information", continues in the face of increasing disorder, the

more robust is that information. "On the side of pure speculative theory I suggest that

information is measured ... by the order it produces out of disorder. But order of what? The. answer seems to be that each piece of information has value insofar as it relates to the order of

other information, and that what we see in mapping [scientific papers onto a knowledge plane]

is this basic order."'
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Here are two key ideas: 1) disorder is necessary to measure information; 2) useful measurement
enables a location to be established. Though location on a plane in two-dimensions can be more
instructive than location on a line in a single dimension, the common requirement is equal-

interval, linear measurement.

Empirically-derived Measurement

The struggle to wrest useful order from the hodgepodge of data that inundates the scientist
devolves ultimately into a quest for linear measurement. If we cannot measure a phenomenon
in equal-interval units, there is grave doubt that we understand it in any scientific sense..
"Length" and "Love" are cases in point. "Indeed, it is a character of all the higher laws of
Nature to assume the form of precise quantitative statement."3

Bradford's Law of Scattering demonstrates equal-interval measurement, linearity, over the
central part of its range. Bradford obtained this linearity by arbitrary manipulation of the
empirical data. Garfield observes that "Bradford's, Zipf's, Lotka's. and Pareto's laws were
independently formulated to explain disparate phenomena. It seems more than coincidence that
they should closely resemble each other. One wonders if they are not all governed by a single
underlying principle."' As Bookstein3 contends, the existence of Bradford's law proves that a
more general form of regularity must be present in the data, of which Bradford's law is a special
case, or else Bradford could not have discovered his law.

Theory-derived Measurement

The empirical approach is to collect whatever there is in the way of data and then to hunt for
some description that summarizes those data in a simple form. The theory-based approach
to develop the criteria that must be satisfied in order for linear measures to be constructed, and
then to learn how to construct data that satisfy those criteria.

The theory-based approach speeds the scientific process because it leads to the elimination of
superficially attractive, but fundamentally unproductive, statistical manipulations. It also permits
investigators to locate coherent subsets of data within otherwise incoherent sets.

Counting: a qualitative decision

Linear measurement begins with counting. Linear measures, e.g., grams, are ideals only
imperfectly realized in practice. Counts are empirical ?Ifs:lutes. The observer can count ten
apples on a tree, or ten papers by an author. Clearly, not all apples are equally large and crisp,
not all papers are of equal value (p.40).6 The first question for the most basic quantitivity of
counting is thus qualitative. Are the objects counted sufficiently alike so as to be considered
interchangeable in the counting process? Stricter rules lead to more discriminating counting
processes. Is a rotten apple counted as an apple? Is a corrected version of an earlier paper
counted as another paper?
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Air lines have discovered that there is a convenient, approximate, but useful and accurate enough

conversion from passenger count to passenger weight. Passenger count is an ordinal, discrete

integer summarizing passengers with a wide range of characteristics. Passenger weight is an

interval-scale amount that idealizes one aspect of the passengers. Once the qualitative decision

has been made as to who to count, the particular details of each passenger become irrelevant.

The essential element in making scientific inferences from counts is that the same mechanism

converts counts to linear measures regardless of the counting rule employed. Thus counts of

green apples, red apples, big apples or ripe apples are all converted to linear weights by the

same mathematical process. Only the conversion factors differ.

Linear measurement: an idealization

It is evident that a single dichotomous observation of a variable, such as the presence or absence

of a particular author among the list of names heading a paper, is not a linear measure of the

proclivity to authorship of that author. Nevertheless, an accumulation of such dichotomous

observations into a 'count summarizes all the available information that exists about that author's

proclivity.

Table I. COUNTS ARE NOT LINEAR MEASURES

CHARACTERISTIC COUNTS LINEAR MEASURES

MEANING Ordinal rank on hoped-for
variable

Linear position on
explicitly defmed variable

STATUS mistaken for "truth" known as estimates

ADDITIVITY non-linear, bent linear, straight

CONTINUITY discrete, lumpy continuous, smooth

PRECISION unknown quantified

LINEAR ANALYSIS unsuited to usual statistics ideal for usual statistics

CONCEPTUALIZATION concrete abstract

OCCURRENCE accidental deliberate

CONSTRUCTION irreproducible i
reproducible

SCOPE local general

CONTEXT situation-bound situation-free ,

4
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Figure 1. Non-linearity of counts. A, non-linear relationship between rating levels of raters

with different severities. B, linear relationship between linearized measures corresponding to

rating levels of different raters. C, relationship of counts to linear measures.
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A count is often treated as or assumed to be a linear measure. But the mere fact that counts
exhibit numerosity and can be written as linear numbers does not give them linear properties.
Table 1 contrasts the properties encountered in counts with those required of linear measures.
Counts often approximate linearity over a central range closely enough for researchers to ignore
their deficiencies. Nevertheless this lack of linearity has usually proved fatal to meaningful
theory development.

Consider journal articles rated on a number of criteria by two experts. One expert applies the
criteria leniently and loosely, the other severely and strictly. The ratings for each article are
accumulated for each rater and become counts. The non-linearity of the counts is shown in the
Lorenz-like curve in Figure 1 A where equivalent counts by the lenient and severe raters are
plotted. These counts may approximate linearity over their central ranges, but provide only
weak support for inference from the counts of the lenient rater to those of the severe rater.
Counts by both raters must be linearized into measures and then equated, as shown in Figure
1B, before inferences based on the lenient rater's counts can be applied with confidence to the
severe rater's counts.

Figure 1C depicts the general ogival relationship between measures and counts. The step from
counts to linear measures is one that empiricists fmd by accident. The logistic ogive or
"autocatalytic curve" is widely used to describe physical processes. "We are lead to suggest
a second basic low of the analysis of science: all the apparently exponential laws of growth must
ultimately be logistic." (p. 30)6 Nevertheless, it is not some physical mechanism that connects
the counts with the measures, it is a mathematical property that only the logistic transformation
possesses.

Rasch Measurement Models

Rascif constructed a measurement theory that contains the necessary and sufficient criteria for
the conversion of counts of qualitatively similar objects into quantitatively linear measures. This
theory capitalizes on the disorder present in observations due to the stochastic element that exists
in all empirical counting operations. Rasch started with the premise that the linear measure of
an object, e.g., an author's proclivity to publish in a special field, must be independent of the
measurement agent, e.g, any particular journal, and vice-versa. Each object has a single linear
measure. Each agent a single linear measure, its calibration, in that same frame of reference.
When measures and calibrations are hypothesized to interact to produce stochastic data, a
necessary and sufficient measurement model can be derived for any type of count.

6
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Table 2. EYAMPLES OF RASCH MEASUREMENT MODELS

Type of Data
Observed
Categories

Ordinal
Interpretation

Measurement Model for
Log[Pni/P*1] = ?

Dichotomies no = 0
yes = 1

less
more

13n-D1

Poisson Counts 0
co

0
co

Bn-DrF1*logfj] . co

Likert Ratings 1

2
m

least

most j =2,m

The essential transformation is always the logistic, log-odds transformation. Table 2 lists
measurement models for three situations.' The basic model for dichotomous, true/false,
present/absent 1/0 observations is

log

(P.
lin Di

1 Phi

Object n is parameterized to have linear measure B. Agent i is parameterized to have linear
calibration D. These interact stochastically to produce a datum with probability Pni of being
observed to be 1.

When the data are Poisson counts of independent events, Fi is the conversion factor from the
logaritlun of the count to the general linear scale for the particular agent of investigation, i. This
formulation supports most empirical laws based on logarithms of counts.

Likert ratings are observations )n. a rating scale or some other ordered series of categories.
Observations are ordinal because it is specified that the higher the particular observation, the
more of the variable is manifested. This model underlies Figure 1. The inevitably uneven
spacing of the categories is parameterized by Fi, the extra "difficulty" overcome in order to be
observed in category j, relative to category j-1. The count-to-measure transformation again has
the appearance of a logistic ogive, but its precise form depends on the behavior of the rating
scale categories.

Measurement and Ouality Control

A major difference between research in the social sciences and that in other sciences is quality
control. Physicists take many observations, rejecting those that seem dubious, and keeping those
of the high quality.' In bibliometrics, the need to verify the quality of data is well established:
"As we have repeatedly done in the past, may we respectfully caution against the serious
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implication ... that quantitative data [i.e., counts] can be used without considered (not rote)
qualitative judgments."' Most social scientists, on the other hand, attempt to include in their
analysis every observed datum. They perform global fit tests in which the data is treated as
sacrosanct, but it is the theoretical model that is accepted or rejected in tow. Rasch
measurement rejects the "global fit" approach in favor of detailed quality control.

For the construction of linear measures, quality control through detailed examination of the fit
of the data to the measurement model is vital. Here it is essential to apply Maier's tongue-in-
cheek law: "If facts do not conform to theory, they must be disposed of."11 For linear measures
to be obtained, the counts must fit a Rasch model. For each analysis, the decisive question is
not "Does the theoretical model fit the empirical data?", but "Do the data fit the model usefully
enough to support linear measurement?"

Rasch models provide quality-control fit statistics at all levels of analysis. Individual data points
can be assessed for their likelihood. Objects and agents, e.g., authors and journals, can be
scrutinized for their adherence to the general behavior of objects and agents. Groups of objects
and agents can be investigated for distinguishing characteristics.

The nature of the lack of fit motivates the remedial action. Idiosyncratic, non-cooperative data
points are isolated for diagnostic investigation. Are they data entry errors? Are they unusual
circumstances? Data-to-model misfit prompts deeper questions: do the data manifest quantities
of one predominant underlying variable, or are they a heterogeneous collection of observations?
Can homogeneous subsets be identified and measures for these constructed? Irremedial lack of
fit signifies that those counts must be rejected as not supporting linear measurement.

The Successful history of Rasch Measurement

Rasclf developed and expanded his measurement methodology between 1951 and 1959. Early
work included linear measurement of oral misreadings, readings speed and math ability. This
lead to major applications of Rasch measurement in educational and psychological testing.
Though initially applied to dichotomous multiple-choice tests, the model is now employed, in
its rating scale form, for performance assessment. The robustness of the model against missing
data, has made it ideal for use with computer-adaptive tests.

The ready availability of softwat e, e.g., BIGSTEPS12 and Facets' , has promoted the application
of Rasch measurement to many fields including quality of paint finishes'', performance of wine-
tasters, measurement of evolutionary development in fossils, and medical patient evaluation.'536

Conclusion

Rasch theory enables the construction of linear measures f,21. m ordinal counts. Linearity, not
mere numerosity, is what nearly all widely used statistical procedures assume of their data. The
computation of meaningful means, standard deviations, and least-squares estimates requires
linearity in the underlying data.
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Once linear measures have been constructed, regression analysis, ANOVA and even simple plots
have a firm foundation. Without linear data, it is not known whether the regression coefficients
are explaining the underlying phenomenon or merely the non-linearity of the counts. Without
linearity, it cannot be determined whether "ceiling" and "floor" effects are substantive fmdings
or merely artifacts of the way the counts were made. Rasch methodology aids research by
building a firm and level foundation from necessarily uncertain and uneven counts.
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